Mbungsstunde lineare Algebra:

Hentige Themen:

- o Ubungsstunden Organisation
- D Lineare Gleichungssysteme D Zeilenstufen form
- s hanssverfahren
- D Eigenschaften des Ganssverfalvens
- DMatrizen & Matrizenrechenregeln
- ODie LR-Zerlegung

Organisation:

- DE-Mail: michbann@student.ethz.ch
- & Slack Gruppe beitreter?
- o Webseile: www.n.ethz.ch/n michbonn (Ihr habt auch alle eine Webseiles)
- DEmpfehlenswerte Video-Reihe: 3B1B "Essence of Linear Algebra"
- o übmasabgabe:
 - Le Online in der Polybox
 - La Deadline Donnerstag 18:00
 - La Notenbonus von 0.25 falls >75% aller liberger "verninftig" gelöst
 - Lo Filename: "Linkly libring # Vorname Nachname" #:= Seriennummer
- Donnerstagsübung wird aufgenommen und hochgeladen.

Lineare Gleichungssystème:

Explizite Form:
$$a_{11} \times_1 + a_{12} \times_2 + \dots + a_{1n} \times_n = b_1$$

 $a_{21} \times_1 + a_{22} \times_2 + \dots + a_{2n} \times_n = b_2$

amaxa + amzxz + -- + amaxa = 6m

o Matrix scheibneise: Es gilt A·x = 5

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & ... & a_{1n} \\ a_{21} & a_{22} & ... & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{mn} & ... & ... & a_{mn} \end{bmatrix}, x = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \vdots \\ x_{mn} \end{bmatrix}$$

Beispiel 1.7:
$$A \times = 5$$

$$\begin{bmatrix} 3 & 7 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} \times 1 \\ \times 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$$

o Obere Dreiechsform/Zeilenstutenform: (ZSF)

Ein LGS kan inner in die ZSF gebracht werden:

$$a_{1} \times a_{1} \times a_{2} \times z + ... + a_{1} \times a_{2} = 5a$$

$$0 \quad a_{2} \times z + ... + a_{2} \times a_{2} = 5a$$

$$0 \quad a_{3} \times x_{2} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{2} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{2} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{2} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{2} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{2} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{2} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{2} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{2} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{2} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{2} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{4} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{4} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{4} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{4} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{4} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{4} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{4} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{4} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{4} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{4} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{4} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{4} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{4} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{4} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{4} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{4} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{4} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{4} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{4} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{4} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{4} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{4} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{4} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{4} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{4} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{4} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{4} + ... + a_{3} \times x_{4} = 5a$$

$$0 \quad a_{3} \times x_{4} + ... + a_{3} \times x_{4} = 5a$$

oder in Matistærn:

$$\begin{bmatrix} 5 & 3 & 2 & 7 \\ 0 & Q & 4 & 0 \\ 0 & 0 & Q & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$

o Gaussva	rfahren:
Das fu	ndamentalste Verteurer in der Vorlesung.
	Las auf die ZSF bringer, um es anschliesserd mit
to Erlo	entender von Zeilen oder Spalter elfacties einer Zeile oder Spalte zu einer nderen addieren
D K	liche lösunger: ine eindentige Lösunger nendlich viele Lösunger eine Lösung
Beispiel	1.6: $A \times = b$, $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 5 & 4 \end{bmatrix}$. $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$ Pivot-Variab
iaussen 1 = D 2	1.6: $A \times = b$, $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 5 & 4 \end{bmatrix}$. $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$ Pivot-Variable 2. 1 0 II-2:I 1 2 1 0 II-2II 1 2 1 0 Variable 5. 4 1 III-2:I 0 1 2 1 0 1 2 1 0 1

Kompatibilitate Sedingung

x3= t, t & R

$$x_{1} + 2x_{3} = 1$$
 $x_{1} + 2x_{2} + x_{3} = 0$
 $x_{2} + 2t = 1$
 $x_{1} = -2x_{2} - x_{3}$
 $x_{2} = 1 - 2t$
 $x_{3} = -2(1 - 2t) - t$
 $x_{4} = -2(1 - 2t) - t$
 $x_{5} = -2(1 - 2t) - t$

Matrizer & Matrizer recherregeln:

o Addition: (Amxn + Bmxn = Cmxn)

Man addiet elementneise:

Beispiel 1.8:
$$\begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} + \begin{bmatrix} 0 & 4 & 3 \\ 2 & 6 & 10 \end{bmatrix} = \begin{bmatrix} 1 & 7 & 13 \\ 4 & 10 & 16 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \frac{1}{2}$$

D Skalarmultiplikation; (x. Amx) = (m*x) x ER Man multipliziert elementueise:

Beispiel 1.9:
$$Z \cdot \begin{bmatrix} 3 & 0 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 4 & 8 \end{bmatrix}$$

Matrix multiplihation: (AmxA.B. Dxp = (mxp)

Bilden das "Skalarprodukt" der Zeilenvelstonen von A und den Spaltenvelstonen von B.

Beispiel 1.10:

$$a_{11} a_{12}$$
 $a_{12} a_{13}$
 $a_{13} a_{12}$
 $a_{14} a_{15}$
 $a_{15} a_{15}$

$$\begin{bmatrix} 2 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 9 \end{bmatrix} = 4$$

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 3 \\ 9 \end{bmatrix} = 11 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 3 \\ 9 \end{bmatrix}$$